Sunday, August 30, 2009

Protein synthesis

is the process in which cells build proteins. The term is sometimes used to refer only to protein translation but more often it refers to a multi-step process, beginning with amino acid synthesis and transcription of nuclear DNA into messenger RNA which is then used as input to translation.

The cistron DNA is transcribed into a variety of RNA intermediates. The last version is used as a template in synthesis of a polypeptide chain. Proteins can often be synthesized directly from genes by translating mRNA. When a protein is harmful and needs to be available on short notice or in large quantities, a protein precursor is produced. A proprotein is an inactive protein containing one or more inhibitory peptides that can be activated when the inhibitory sequence is removed by proteolysis during posttranslational modification. A preprotein is a form that contains a signal sequence (an N-terminal signal peptide) that specifies its insertion into or through membranes; i.e., targets them for secretion. The signal peptide is cleaved off in the endoplasmic reticulum.. Preproproteins have both sequences (inhibitory and signal) still present.

For synthesis of protein, a succession of tRNA molecules charged with appropriate amino acids have to be brought together with an mRNA molecule and matched up by base-pairing through their anti-codons with each of its successive codons. The amino acids then have to be linked together to extend the growing protein chain, and the tRNAs, relieved of their burdens, have to be released. This whole complex of processes is carried out by a giant multimolecular machine, the ribosome, formed of two main chains of RNA, called ribosomal RNA (rRNA), and more than 50 different proteins. This molecular juggernaut latches onto the end of an mRNA molecule and then trundles along it, capturing loaded tRNA molecules and stitching together the amino acids they carry to form a new protein chain.

Protein biosynthesis, although very similar, is different for prokaryotes and eukaryotes.

Amino acids

Amino acids are the monomers which are polymerized to produce proteins. Amino acid synthesis is the set of biochemical processes (metabolic pathways) which build the amino acids from carbon sources like glucose.

Many organisms have the ability to synthesize only a subset of the amino acids they need. Adult humans, for example, need to obtain 8 of the 20 amino acids from their food.


Simple diagram of transcription elongationIn transcription an mRNA chain is generated, with one strand of the DNA double helix in the genome as template. This strand is called the template strand. Transcription can be divided into 3 stages: Initiation, Elongation and Termination, each regulated by a large number of proteins such as transcription factors and coactivators that ensure the correct gene is transcribed.

The DNA strand is read in the 3' to 5' direction and the mRNA is transcribed in the 5' to 3' direction by the RNA polymerase.

Transcription occurs in the cell nucleus, where the DNA is held. The DNA structure is two helixes made up of sugar and phosphate held together by the bases. The sugar and the phosphate are joined together by covalent bond. The DNA is "unzipped" by the enzyme helicase, leaving the single nucleotide chain open to be copied. RNA polymerase reads the DNA strand from 3 prime (3') end to the 5 prime (5') end, while it synthsizes a single strand of messenger RNA in the 5' to 3' direction. The general RNA structure is very similar to the DNA structure, but in RNA the nucleotide uracil takes the place that thymine occupies in DNA. The single strand of mRNA leaves the nucleus through nuclear pores, and migrates into the cytoplasm.

The first product of transcription differs in prokaryotic cells from that of eukaryotic cells, as in prokaryotic cells the product is mRNA, which needs no post-transcriptional modification, while in eukaryotic cells, the first product is called primary transcript, that needs post-transcriptional modification (capping with 7 methyl guanosine, tailing with a poly A tail) to give hnRNA (heterophil nuclear RNA). hnRNA then undergoes splicing of introns (non coding parts of the gene) via spliceosomes to produce the final mRNA.


The synthesis of proteins is known as translation. Translation occurs in the cytoplasm where the ribosomes are located. Ribosomes are made of a small and large subunit which surrounds the mRNA. In translation, messenger RNA (mRNA) is decoded to produce a specific polypeptide according to the rules specified by the trinucleotide genetic code. This uses an mRNA sequence as a template to guide the synthesis of a chain of amino acids that form a protein. Translation proceeds in four phases: activation, initiation, elongation and termination (all describing the growth of the amino acid chain, or polypeptide that is the product of translation).

In activation, the correct amino acid (AA) is joined to the correct transfer RNA (tRNA). While this is not technically a step in translation, it is required for translation to proceed. The AA is joined by its carboxyl group to the 3' OH of the tRNA by an ester bond. When the tRNA has an amino acid linked to it, it is termed "charged". Initiation involves the small subunit of the ribosome binding to 5' end of mRNA with the help of initiation factors (IF), other proteins that assist the process. Elongation occurs when the next aminoacyl-tRNA (charged tRNA) in line binds to the ribosome along with GTP and an elongation factor. Termination of the polypeptide happens when the A site of the ribosome faces a stop codon (UAA, UAG, or UGA). When this happens, no tRNA can recognize it, but releasing factor can recognize nonsense codons and causes the release of the polypeptide chain. The capacity of disabling or inhibiting translation in protein biosynthesis is used by antibiotics such as: anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin, puromycin etc.

Translation the process of converting the mRNA codon sequences into an amino acid polypeptide chain.

1.Initiation - A ribosome attaches to the mRNA and starts to code at the FMet codon (usually AUG, sometimes GUG or UUG).
2.Elongation - tRNA brings the corresponding amino acid (which has an anticodon that identifies the amino acid as the corresponding molecule to a codon) to each codon as the ribosome moves down the mRNA strand.
3.Termination - Reading of the final mRNA codon (aka the STOP codon), which ends the synthesis of the peptide chain and releases it.

Events following protein translation

The events following biosynthesis include post-translational modification and protein folding. During and after synthesis, polypeptide chains often fold to assume, so called, native secondary and tertiary structures. This is known as protein folding.

Many proteins undergo post-translational modification. This may include the formation of disulfide bridges or attachment of any of a number of biochemical functional groups, such as acetate, phosphate, various lipids and carbohydrates. Enzymes may also remove one or more amino acids from the leading (amino) end of the polypeptide chain, leaving a protein consisting of two polypeptide chains connected by disulfide bonds.


Google+ Badge